Research Output
PermutEx: Feature-Extraction-Based Permutation — A New Diffusion Scheme for Image Encryption Algorithms
  Traditional permutation schemes mostly focus on random scrambling of pixels, often neglecting the intrinsic image information that could enhance diffusion in image encryption algorithms. This paper introduces PermutEx, a feature-extractionbased permutation method that utilizes inherent image features to scramble pixels effectively. Unlike random permutation schemes, PermutEx extracts the spatial frequency and local contrast features of the image and ranks each pixel based on this information, identifying which pixels are more important or information-rich based on texture and edge information. In addition, a unique permutation key is generated using the Logistic-Sine Map based on chaotic behavior. The ranked pixels are permuted in conjunction with this unique key, effectively permuting the original image into a scrambled version. Experimental results indicate that the proposed method effectively disrupts the correlation in information-rich areas within the image resulting in a correlation value of 0.000062. The effective scrambling of pixels, resulting in nearly zero correlation, makes this method suitable to be used as diffusion in image encryption algorithms.

  • Date:

    27 March 2024

  • Publication Status:

    Published

  • Publisher

    IEEE

  • DOI:

  • Funders:

    Edinburgh Napier Funded

Citation

Âé¶¹ÉçÇø

Khan, M. S., Ahmad, J., Al-Dubai, A., Jaroucheh, Z., Pitropakis, N., & Buchanan, W. J. (2023, November). PermutEx: Feature-Extraction-Based Permutation — A New Diffusion Scheme for Image Encryption Algorithms. Presented at 2023 IEEE 28th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), Edinburgh, United Kingdom

Authors

Keywords

Diffusion, permutation, feature extraction, spatial frequency, local contrast, Josephus permutation, chaos

Monthly Views:

Available Documents